Most of us have heard the advice, “Change only one variable at a time to understand how that variable affects your system.”
Sometimes this advice is correct, but only in a very local sense. For example, if we want to estimate how sensitive a system is to a change in variable A, then we can hold all other variables constant and change variable A very slightly. The change in the system response divided by the change in variable A is an estimate of the sensitivity derivative at the original design point.
But, the key word in the previous sentence is “point,” because derivatives are defined at a point. If we select a different starting design point, and then repeat the above exercise, we would expect to get a different value for the sensitivity derivative.
Let’s examine this idea further. If we hold variable B constant at value B1, changing variable A will have a certain influence on the system response. But if we hold variable B constant at value B2, the effect of variable A might be very different than before. If so, then the effect of variable A depends on the value of variable B. When this occurs, we say that there is an interaction between variables A and B. We can easily generalize this argument to many variables. Continue reading
A similar gamble occurs when you apply some optimization approaches based on Design of Experiments (DOE) concepts. In this case, the actual objective function being minimized is evaluated at a predetermined set of design points. Then, a simple approximation of the objective function is developed by fitting an analytical function to these points. This approximate function is often called a response surface (also a surrogate function). The optimization search is then performed on the response surface, because evaluations of this simpler function are usually much quicker than evaluations of the actual objective function.
Multi means “many” or “multiple.” Multidisciplinary design optimization (MDO) has become popular largely because it allows engineers to optimize over many different disciplines at the same time.
The first is the development of mental shortcuts, or heuristics, which allow us to make snap judgments, often correctly. For example, our intuition tells us that blurry objects are farther away than clear ones. This is often a helpful assumption, except that on foggy mornings, a car in front of you may be much closer than intuition tells you it is.
I have a great idea for a new reality adventure television series.
A trial-and-error approach to building and testing a myriad of hardware prototypes makes it too expensive to consider many design alternatives.
So, what is causing smart people to form this opinion? I believe there are four types of experiences that cause people to lose faith in optimization:
Consider the consequences of maximizing iteration throughput for a typical manual design process. Let’s assume a simple, but familiar, scenario in which each iteration involves the following steps:
FOR THE MOST EFFICIENT AND FASTEST SERVICE