Exploring Design Performance Relationships

Highlighting a Few New Features that Help You Discover Better Designs, Faster

Often, improvements to the simplest things can have a big impact on your daily tasks. There are many tasks we perform repeatedly when working with HEEDS, and streamlining those saves time and reduces effort. HEEDS 2015.11 contains many enhancements focused on simplifying workflows and I want to highlight a few that help in exploring design performance relationships.

To explore relationships between variables and responses in detail, you typically require multiple plots of the same type, but with different variables to gain a clearer understanding of dependency or influence. However, there are many plot features that are tailored to suit the particular way you want to view the results such as axis scales, data symbols, curves styles, title fonts, and so on.

To avoid having to create a new plot from scratch and redefine all these settings, you can now right click and select the Copy Plot option. This makes an exact copy of the existing plot, with all the customization. You then just need to alter the variables or responses being displayed saving a lot of setup time.

Fig1-performance_relationships

Figure 1. Make a copy of an existing plot with a single right click option

Continue reading

Is it OK if Some Simulations Fail during a HEEDS Design Study?

error-designsDuring a design exploration study, HEEDS makes many calls to your simulation model to evaluate potential designs. This means that your model needs to accurately predict design performance values (objectives and constraints) over a wide range of inputs (design variables). Most modern simulation models satisfy this requirement without difficulty.

But in some cases, it is too much to ask that a model be perfect for all combinations of variable values. For example:

  • In a shape optimization problem, some combinations of shape parameter values might produce invalid geometries, making it impossible to generate a CAD model for those designs. Ideally, shape parameters should be defined in a way that ensures all geometries are valid, but that is not always a realistic expectation.
  • Nonlinear or dynamic CAE models occasionally experience problems with convergence or other kinds of numerical errors. Hopefully your models are robust, but it is more difficult to predict the behavior of some designs than others, so numerical errors will occur now and then.

Of course there are many other reasons why a simulation model might terminate prematurely or predict incorrect results. Because many of these cases are unavoidable, HEEDS has been designed to be robust against these model failures. We refer to these as error designsContinue reading