Suppose that your favorite finite element software boasted the following claims:
“Over a dozen equation solvers are available to approximate the solution of your problem, and each solver contains a rich set of parameters that you can define to tune the solver’s performance. To maximize the accuracy of your solution and the efficiency of the solution process, simply choose the solver that is intended for your problem type, and then tune it properly. Though it is often not possible to classify your problem type beforehand, usually the right solver can be identified within 3-5 attempts. Then, you can use an iterative tuning process to make the solution even more accurate and efficient.”
If the above statements were true, then each finite element solution would require a full-blown research project to find the right equation solver. The added time and cost of numerous solution iterations would offset many of the benefits of the finite element method within the design process. Continue reading